lunedì 23 gennaio 2017

224. Statistiche


I mesi di settembre ed ottobre del 1927 furono un periodo ricco di incontri e scambi di idee che hanno contribuito alle scoperte della fisica del ventesimo secolo.

Per celebrare Alessandro Volta nel primo centenario della morte, venne organizzato, nella sua città natale Como, un Congresso internazionale destinato a diventare un evento estremamente significativo nella storia della fisica moderna. Aperto l'11 settembre da Quirino Majorana, presidente dalla Società italiana di fisica e zio di Ettore, si concluse il 27 settembre. In un momento nel quale la meccanica quantistica va definendo le basi di una nuova visione del mondo, sono invitati a Como tutti i protagonisti di quello straordinario fermento. Solo Albert Einstein non partecipa, per la sua ferma opposizione al governo italiano.

Dei 61 partecipanti, alcuni sono giovanissimi: Wolfgang Pauli ha 27 anni, Werner Heisenberg, Enrico Fermi e Franco Rasetti ne hanno 26, Paul Adrien Maurice Dirac 25, Emilio Segrè 22. Sono presenti molti premi Nobel per la fisica: Niels Bohr (1922), William Lawrence Bragg (1915), Arthur Compton (1927) James Franck (1925), Hendrik Antoon Lorentz (1902), Guglielmo Marconi (1909), Robert Andrews Millikan (1923), Max Planck (1918), Max von Laue (1914), Pieter Zeeman (1902), oltre ai premi Nobel per la chimica Francis William Aston (1922) e Ernest Rutherford (1908). I presenti che presero il Nobel successivamente furono: Max Born (1954) e Otto Stern (1943), oltre ai già citati Heisenberg (1932), Dirac (1933), Fermi (1938), Pauli (1945) e Segrè (1959). 
Fermi, Heisenberg e Pauli

 

Un mese dopo, più o meno gli stessi fisici si riunirono a Bruxelles dal 24 al 29 ottobre 1927 per il quinto Congresso Solvay, il cui titolo era: Elettroni e fotoni. Benjamin Couprie, fotografo ufficiale dei congressi Solvay, ne immortalò i partecipanti:

Auguste Piccard, Émile Henriot, Paul Ehrenfest, Édouard Herzen, Théophile de Donder, Erwin Schrödinger, Jules-Émile Verschaffelt, Wolfgang Pauli, Werner Heisenberg, Ralph H. Fowler, Léon Brillouin, Peter Debye, Martin Knudsen, William Lawrence Bragg, Hendrik Anthony Kramers, Paul Dirac, Arthur Compton, Louis de Broglie, Max Born, Niels Bohr, Irving Langmuir, Max Planck, Marie Curie, Hendrik Antoon Lorentz, Albert Einstein, Paul Langevin, Charles Eugène Guye, Charles Thomson Rees Wilson, Owen Willans Richardson.
 





L’aspetto che voglio però mettere in risalto qui di seguito, è come nei pochi anni che precedettero il 1927, alcuni giovani fisici, siano riusciti a formulare i concetti che stanno alla base della meccanica quantistica e della fisica atomica, e per farlo comincio da una delle pietre miliari della fisica. Il principio di esclusione di Pauli venne enunciato nel 1925 per la spiegazione della struttura atomica, ma successivamente trovò un inquadramento nella teoria quantistica assiomatica. Dall’inizio degli anni venti erano alla ricerca di un modello teorico che, partendo dal modello atomico di Bohr per l’atomo di idrogeno, riuscisse a spiegare le osservazioni sperimentali. Nel 1922 Pauli, su invito di Bohr, si recò a Copenaghen per dedicarsi all’effetto Zeeman anomalo, che consisteva nella separazione di un livello energetico in un multipletto, a seguito dell’applicazione di un campo magnetico. Dopo accurata analisi, Pauli arrivò alla conclusione che sembrava necessario associare all’elettrone una nuova proprietà fisica a 2 valori non prevista in precedenza. Nel 1925 George Uhlenbeck e Samuel Goudsmit introdussero l’ipotesi che l’elettrone ruotasse intorno al proprio asse con un momento angolare intrinseco che fu chiamato spin.

Ma veniamo alle varie statistiche

Da un punto di vista classico, la meccanica statistica permette di poter caratterizzare lo studio di un sistema con un numero di particelle non interagenti molto grande, dell'ordine del numero di Avogadro, attraverso grandezze macroscopiche, come temperatura, energia libera, pressione o volume.

Il problema principale della meccanica statistica consiste nella ricerca della legge di distribuzione per un sistema che si trovi ad una temperatura assegnata. Questo problema ha avuto per la prima volta una soluzione parziale da parte di Maxwell (gas costituito da molecole puntiformi), la soluzione generale è stata ricavata da Boltzmann. Senza entrare troppo nei dettagli, lo stato di ciascuna molecola si può rappresentare come un punto in un opportuno spazio delle fasi (che di solito rappresenta tutte le possibili posizioni e velocità di ogni molecola). Se pensiamo di suddividere lo spazio delle fasi in tante cellette, aventi lo stesso ipervolume di dimensioni opportune, e di segnare in questo spazio tutti i punti che rappresentano gli stati in cui si trovano le varie molecole ad un certo istante, con un calcolo probabilistico si può ricavare la legge di densità che determina direttamente la distribuzione statistica delle molecole. Come anticipato sopra questo fu ricavato da Maxwell e Boltzmann nella seconda metà del diciannovesimo secolo.

La statistica di Bose-Einstein e la statistica di Fermi-Dirac sono approssimate dalla statistica di Maxwell-Boltzmann nel caso in cui siano coinvolte alte temperature o relativamente basse densità. Poiché la densità di occupazione degli stati dipende dalla temperatura, si hanno comportamenti diversi tra alta e bassa temperatura. Ad alta temperatura la maggior parte dei sistemi si colloca entro i limiti classici, ovvero le differenze sono trascurabili a meno che essi abbiano una densità molto alta, come ad esempio in una stella nana bianca.

Dopo più di 40 anni, lo studio di particelle come fotoni (che seguono la statistica di Bose-Einstein, da cui bosoni) e elettroni (che seguono la statistica di Fermi-Dirac, da cui fermioni) portarono al concetto di particelle identiche. I bosoni, contrariamente ai fermioni, non seguono il principio di esclusione di Pauli: cioè un numero illimitato di bosoni può occupare lo stesso stato energetico contemporaneamente. In fisica statistica particelle identiche (o indistinguibili) sono particelle che non possono essere per principio distinte le une alle altre. Questo fatto ha importanti conseguenze in meccanica statistica. Infatti in meccanica statistica ci si basa su argomenti probabilistici che a loro volta sono influenzati dal fatto che gli oggetti studiati siano identici o invece esista la possibilità, almeno in linea di principio, di riuscire a distinguerli. Come conseguenza, particelle identiche manifestano un comportamento sensibilmente differente da particelle che possano essere distinte.

La statistica di Bose-Einstein è particolarmente utile nello studio dei gas, a differenza della statistica di Fermi-Dirac, utilizzata più spesso nello studio degli elettroni nei solidi. Per questi motivi esse costituiscono la base della teoria dei semiconduttori e dell'elettronica.

La statistica di Bose-Einstein è stata introdotta nel 1920 da Satyendra Nath Bose per i fotoni ed è stata estesa agli atomi da Albert Einstein nel 1924. La statistica di Fermi-Dirac venne introdotta nel 1926 da Enrico Fermi e Paul Dirac.

Fino al 1930 erano conosciute solo 3 particelle: elettrone, protone e fotone; inoltre dovrà passare molto tempo perché si arrivi a comprendere la connessione tra spin e statistica, la risposta fu data da Pauli nel 1940: sono bosoni le particelle con spin intero o nullo, mentre sono fermioni quelle con spin semi-intero.

Facciamo qualche esempio

2 particelle A e B possono trovarsi in 2 celle differenti: abbiamo quindi 4 casi differenti per la statistica di Boltzmann, 3 per quella di Bose–Einstein e 1 solo caso per la statistica di Fermi-Dirac. 
 

Dalla figura si vede che è impossibile avere 2 fermioni nella stessa cella (principio di esclusione di Pauli), mentre la probabilità di avere 2 bosoni nella stessa cella è addirittura maggiore, cioè i fotoni hanno la tendenza a restare uniti.


Qui di seguito un esempio con 3 celle (nel caso di particelle identiche, vengono chiamate entrambe A). 









 

 
1887 Heinrich Rudolf Hertz scopre l’effetto fotoelettrico
1896 Wilhelm Conrad Röntgen scopre i raggi X
1900 Max Planck enuncia la legge della radiazione del corpo nero
1905 Albert Einstein fornisce la spiegazione dell’effetto fotoelettrico
1911 Jean Perrin prova l’esistenza di atomi e molecole
1913 Niels Bohr presenta il suo modello atomico
1917 Albert Einstein introduce l’idea che porterà allo sviluppo del laser
1922 Arthur Compton dimostra l’aspetto corpuscolare dei fotoni
1924 Louis de Broglie suggerisce che l’elettrone può avere un aspetto ondulatorio
1924 Satyendra Bose e Albert Einstein introducono la statistica di Bose–Einstein
1925 Wolfgang Pauli enuncia il principio di esclusione per l’elettrone
1925 George Uhlenbeck e Samuel Goudsmit postulano lo spin dell’elettrone
1925 Werner Heisenberg, Max Born e Pascual Jordan formulano la meccanica quantistica delle matrici
1926 Erwin Schrödinger formula la meccanica quantistica ondulatoria e ne prova l’equivalenza con la meccanica quantistica delle matrici
1926 Enrico Fermi scopre la connessione tra spin e statistica
1926 Paul Dirac introduce la statistica di Fermi–Dirac
1927 Werner Heisenberg enuncia il principio di indeterminazione
1927 Max Born interpreta la natura probabilistica della funzione d’onda
1928 Paul Dirac formula la teoria relativistica dell’equazione d’onda quantistica
1932 James Chadwick scopre il neutrone
1932 Carl D. Anderson scopre il positrone
 

 




 

mercoledì 28 dicembre 2016

223. Teorema di Pitagora


Nel numero di dicembre 2016 della rivista “Le Scienze”, Piergiorgio Odifreddi ci parla dell’arte di sbagliare i calcoli, ed in particolare distilla diverse idee riguardanti analisi delle probabilità e statistica. Non ripeterò qui quanto descritto nell’articolo, ma prenderò spunto da questo per un paio di post.

Primo dei due post:

Jean Paul de Gua de Malves (Carcassonne, 1713 – Parigi, 1785) è stato un abate, matematico ed economista francese. Gua de Malves era pienamente introdotto nell'ambiente dei filosofi francesi durante l'ultimo periodo dell'Ancien Régime e fu uno dei primi scienziati coinvolti nella compilazione dell'Encyclopédie, della quale fu coordinatore principale dal 1745 al 1747, quando il suo posto fu preso da Denis Diderot.

Pitagora (Samo, 570 a.C. circa – Metaponto, 495 a.C. circa) è stato un filosofo greco. Quasi sicuramente non lasciò nulla di scritto e anche le opere a lui ascritte, vanno attribuite ad autori sconosciuti, che vissero in epoca cristiana o di poco antecedente. Pitagora è considerato l'iniziatore del vegetarianismo in Occidente grazie ad alcuni versi delle Metamorfosi di Ovidio, che lo descrivono come il primo degli antichi a scagliarsi contro l'abitudine di cibarsi di animali, reputata dal filosofo un'inutile causa di stragi, dato che la terra offre piante e frutti sufficienti a nutrirsi. Il teorema per cui il filosofo è famoso era già noto agli antichi Babilonesi ed era conosciuto anche in Cina e in India, ma alcune testimonianze riferiscono che Pitagora ne avrebbe intuito la validità.

Enunciato: in ogni triangolo rettangolo il quadrato costruito sull'ipotenusa è sempre equivalente all'unione dei quadrati costruiti sui cateti.

Il teorema di Pitagora si incontra in qualsiasi ambito della matematica e della fisica. La sua dimostrazione è abbastanza semplice ed intuitiva.

 
https://en.wikipedia.org/wiki/Pythagorean_theorem
  

Una sostanziale generalizzazione del teorema di Pitagora a 3 dimensioni è il teorema di de Gua: se un tetraedro ha un vertice formato da angoli retti (come nel caso dei vertici di un cubo), allora il quadrato dell'area della faccia opposta a detto vertice è uguale alla somma dei quadrati delle aree delle altre 3 facce.



Esempio: si voglia calcolare l’area del triangolo ABC di Figura 1 (dove i punti A, B e C, non hanno necessariamente lo stesso valore). Se invece prendiamo 3 punti posizionati a distanza unitaria dall’origine, ognuno dei 3 triangoli ha area 0,5, mentre il triangolo ABC misura 0,866 (radice di 3, fratto 2).

Un'altra generalizzazione del teorema di Pitagora, introdotta da Donald R. Conant e William A. Beyer, si applica a una vasta gamma di oggetti e insiemi di oggetti in qualsiasi numero di dimensioni.





Mi piace pensare che la nostra sia una visione limitata del problema e che in realtà il teorema di Pitagora sia un caso molto particolare di un teorema con validità molto più ampia.

 























lunedì 28 novembre 2016

222. Paralipomeni e DNA


Cominciamo con un'aggiunta di cose precedentemente tralasciate (paralipomeni - dal greco paraleipómena, appunto omettere o tralasciare).
Nel post 221 abbiamo visto come Didone, prendendo tanto terreno "quanto ne poteva contenere una pelle di bue", riuscì ad ottenere il terreno per fondare Cartagine, tagliando la pelle di un toro in tante striscioline e mettendole in fila, in modo da delimitare quello che sarebbe stato il futuro territorio della città, riuscendo a occupare un terreno di poco meno di 1 km2. Da un rapido conto si può vedere che tagliando in striscioline larghe 2 mm, una pelle di toro di 4 m2, unendole una all’altra, si ottiene una lunghezza totale di 2 km. Se Didone avesse fatto strisce più sottili avrebbe potuto prendere più terreno.

Andiamo ora nel diciannovesimo secolo.

Era il 1868 e il chimico, medico e fisiologo tedesco Friedrich Miescher, da alcune cellule di pus, preleva quello che tempo dopo si sarebbe chiamato acido nucleico. Passano 20 anni. Albrecht Kossel, biologo svizzero, ne scopre i costituenti: acido fosforico, zucchero e basi azotate. Negli anni venti si scopre che quando lo zucchero è desossiribosio, si ha l’acido desossiribonucleico o DNA. Tralascio alcuni studi, anche se importanti, e arrivo al 1944, quando Erwin Schrödinger (quello della famosa equazione) pubblica il famoso libro “Che cos’è la vita” dove vengono elaborate e raccolte le lezioni da lui tenute al Trinity College nel febbraio del 1943. La questione centrale è “come la cellula sia governata da un codice inscritto nei geni” e Schrödinger suggerisce l’ipotesi che la molecola del gene deve essere un cristallo aperiodico, formato da una sequenza di elementi isomerici che costituiscono il codice ereditario. Tale codice contiene il piano di sviluppo dell’organismo.




Dieci anni più tardi, nel 1953, Francis Crick, James Watson, Rosalind Franklin e Maurice Wilkin scopriranno la struttura del DNA. La struttura a doppia spirale del DNA e il meccanismo di duplicazione nel corso della divisione cellulare (mitosi) permettono a ciascuna delle 2 spirali di generare la sua controparte fabbricando le basi necessarie. Anche il famoso chimico Linus Pauling aveva intrapreso la stessa strada, ma senza portare a termine le ricerche. Pauling era stato professore di Crick e Watson; a quel tempo aveva già scoperto molte strutture della chimica organica. Come aneddoto ricordo che il ruolo ispiratore di Pauling fu comunque riconosciuto dalla giuria del premio Nobel che, nello stesso anno in cui premiò Crick e Watson, attribuì anche a lui il premio Nobel (ma per la Pace).




Il peso medio di ogni coppia di basi (Adenina-Timina o Citosina-Guanina) è di 650 dalton (1 dalton è definito come la massa di un atomo di Idrogeno, 1.67 x 10-24 grammi). Una molecola di DNA ha un corredo di circa 3.3 miliardi di paia di basi e un peso medio di 3.3 x 109 x 650 Dalton = 2.15 X 1012 Dalton =  3.59 x 10-12 grammi.




Se stiriamo le 2 spirali ponendole in serie, l’estensione sarà poco meno di 2 metri. Allineando tutte le molecole di DNA, contenute nelle cellule di un corpo umano, copriremmo 600 volte la distanza Terra-Sole andata e ritorno!

In un adulto di 80 kg ci sono circa 8 x 1027 atomi. In media, l’87% degli atomi sono Idrogeno o Ossigeno. In una tipica cellula umana ci sono circa 1014 atomi, ed è interessante notare che il numero di cellule nel corpo umano è anch’esso circa 1014.

In modo analogo in una galassia media ci sono circa 2 x 1011 stelle e nell’Universo sono stimate circa 2 x 1011 galassie. Questo sembra più di una semplice coincidenza.








 

domenica 6 novembre 2016

221. Una proprietà della Catenaria


La successione di Didone al trono di Belo, re di Tiro, di cui era figlia primogenita, fu contrastata dal fratello Pigmalione, che le uccise segretamente il marito Sicheo e prese il potere al suo posto. Probabilmente con lo scopo di evitare la guerra civile, Didone lasciò Tiro con un largo seguito e cominciò una lunga peregrinazione, le cui tappe principali furono Cipro e Malta.

Approdata infine sulle coste libiche, Didone ottenne dal re Iarba il permesso di stabilirvisi, prendendo tanto terreno "quanto ne poteva contenere una pelle di bue". L'antico soprannome di Cartagine, infatti, era "Birsa", che in greco significa "pelle di bue". Didone scelse una penisola, tagliò astutamente la pelle di toro in tante striscioline e le mise in fila, in modo da delimitare quello che sarebbe stato il futuro territorio della città di Cartagine e riuscì a occupare un terreno di circa ventidue stadi quadrati (uno stadio equivale a circa 185,27 m). Da questa leggenda è nato il cosiddetto problema di Didone.


Cartagine




Didone è una figura mitologica, fondatrice e prima regina di Cartagine. Secondo la narrazione virgiliana si innamorò dell'eroe troiano Enea, figlio di Anchise, quando si rifugiò a Cartagine prima di arrivare nel Lazio, e lo sposò. Disperata per la partenza improvvisa di Enea, costretto dal Fato, Didone si uccise con la spada di Enea.

Con la corda composta dalle striscioline, la principessa fece congiungere le rive dai lati opposti dell’altura, acquisendo così la proprietà della collina ed un comodo sbocco sul mare; inoltre viene specificato che Didone fece disporre la corda a forma di semicerchio in modo da racchiudere la maggior area possibile. Questo racconto alimentò la curiosità dei matematici: infatti porta con sé la questione del perché Didone avesse scelto proprio la forma semicircolare per delimitare quella che riteneva essere la maggior superficie possibile. Il problema, chiamato spesso problema isoperimetrico, si può riformulare chiedendo quale sia la figura geometrica che a parità di perimetro ha area maggiore. La soluzione è intuitivamente il cerchio. Per dimostrare questo risultato si dovette attendere il 1838 quando Jakob Steiner ci riuscì mediante un processo noto come simmetrizzazione di Steiner. Successivamente la sua dimostrazione fu perfezionata e resa più rigorosa da altri matematici come Karl Weierstrass.

Si tratta di ottenere il massimo risultato con un dato sforzo o viceversa un risultato desiderato con il minimo sforzo. Da questa doppia formulazione dello stesso problema, vediamo che non vi è alcuna differenza essenziale fra massimo e minimo, cioè possiamo semplicemente parlare di valori estremi. Un campo in cui il principio di minimo si è mostrato utile è la statica, la scienza dell’equilibrio. Un corpo che si muove su una superficie liscia sotto l’influenza della forza di gravità, si ferma in equilibrio stabile nel punto più basso. Se abbiamo un sistema meccanico formato da diversi corpi, come ad esempio una collana di perle, il centro di gravità del sistema all’equilibrio sarà situato il più in basso possibile. In altre parole, per trovare l’equilibrio stabile, si deve cercare la posizione in cui l’altezza del baricentro sia un minimo. Il prodotto di questa altezza per la forza di gravità è chiamato energia potenziale. Una catena, costituita da moltissime parti e sospesa agli estremi, assume una forma definita dalla condizione che l’altezza del suo baricentro sia un minimo. Abbiamo a che fare con un problema variazionale e fra le infinite curve di ugual lunghezza, quella con il baricentro più basso viene chiamata catenaria.



Da Wikipedia - In matematica, la catenaria è una particolare curva piana iperbolica (dall'aspetto simile alla parabola), il cui andamento è quello caratteristico di una fune omogenea, flessibile e non estensibile, i cui due estremi siano vincolati e che sia lasciata pendere, soggetta soltanto al proprio peso.
L'equazione della catenaria può essere espressa matematicamente tramite il coseno iperbolico: 
 






 

Il problema era già stato considerato da Leonardo da Vinci nel XV secolo. Galileo Galilei credette che la parabola potesse essere l’equazione giusta, ma in seguito nel 1669 il matematico tedesco Joachim Jungius dimostrò che non era così. Ma furono Gottfried Leibniz, Christiaan Huygens e Johann Bernoulli a ricavare nel 1691 l’equazione corretta, che, al contrario della parabola, era una curva non algebrica. Galilei non aveva però sbagliato del tutto; nella catenaria la distribuzione del peso della catena è uniforme per ogni lunghezza di arco, mentre nei ponti sospesi, dove alla catena sono appesi i tiranti che sostengono il ponte, la distribuzione del peso è uniforme per unità orizzontale di lunghezza e la curva è in questo caso una parabola. Nel caso di una vela gonfiata dal vento si ottiene la stessa curva, solo che viene chiamata velaria. Abbiamo già detto in un precedente post, che tra le proprietà della catenaria c’è quella di essere l’evoluta di una trattrice.

Si può provare che la catenaria è la curva cercata da Eulero che soddisfa la condizione: la superficie ottenuta dalla rotazione della catenaria è detta catenoide ed è la superficie di area minima che ha come bordo due circonferenze nello spazio poste su piani paralleli.

Catenoide









Se si considera una linea retta parallela all’asse delle x (con equazione y = k), I’area compresa nell’intervallo [a,b] è semplicemente quella del rettangolo di lati “k” e “b-a”. Si può anche dire che l’area è proporzionale alla lunghezza del segmento della curva (in questo caso della retta).

Ebbene, esiste un’altra curva che possiede la stessa proprietà: la catenaria.


a = A = b = B







 










 

domenica 23 ottobre 2016

220. Everest


Il monte Everest è la vetta più alta della Terra (8.848 m). Il nome fu introdotto nel 1865 dall'inglese Andrew Waugh (1810 – 1878), governatore generale dell'India, in onore di Sir George Everest (1790 – 1866), suo predecessore nel posto di ispettore generale dell'India, che lavorò per molti anni come responsabile di geografi e cartografi britannici in India. George aveva molti fratelli e nipoti. Una di queste nipoti era Mary Everest (1832 – 1916) figlia dell’eccentrico reverendo Thomas Roupell Everest. Da bambina Mary aveva mostrato una certa attitudine per la matematica ed i suoi genitori decisero di farla seguire da un tutor di 17 anni più anziano, al quale era legata da profonda amicizia. All’età di 23 anni, dopo la morte del padre, era caduta in miseria e alla proposta di matrimonio del tutor accettò di sposarsi. Ebbero 5 figlie, ma il matrimonio durò appena 9 anni. Nell’autunno del 1864, il marito aveva percorso 5 chilometri a piedi sotto la pioggia, mentre si recava ad insegnare all’University College Cork (UCC) in Irlanda. La cosa tragica è che probabilmente la sua morte fu affrettata dalle pericolose teorie della moglie, che a quanto pare lo “curava per similia” facendolo coricare tra lenzuola inzuppate nell’acqua fredda. Se ne andava così per una polmonite, all’età di 49 anni, George Boole (1815 – 1864) considerato il fondatore della logica matematica.


La vita di George Boole

Nasce a Lincoln, in Inghilterra, il 2 novembre 1815 e cresce in povertà, studiando da autodidatta greco, latino, francese, tedesco e italiano. Studia anche matematica sui testi di Giuseppe Luigi Lagrange e Pierre-Simon de Laplace. In seguito si dedica allo studio di metodi algebrici per la risoluzione di equazioni differenziali e la pubblicazione dei suoi risultati gli fa ottenere la medaglia della Royal Society.

Nel 1849 riceve la nomina alla cattedra di matematica al Queen's College di Cork, in Irlanda, dove insegnerà per tutto il resto della vita. Ed è proprio a Cork che George Boole si spegne l'8 dicembre 1864.

I più grandi meriti che vengono attribuiti a George Boole sono l'applicazione del calcolo simbolico alla logica. Con il suo "The Mathematical Analysis of Logic" (1847), Boole propone l'associazione tra logica e matematica al posto di quella fra logica e metafisica; in sostanza pone la logica sullo stesso piano della scienza, delle leggi dei simboli, attraverso i quali si esprimono i pensieri. La sua opera più importante è "An Investigation of the Laws of Thought" (1854), indirizzata alle leggi del pensiero, con la quale viene proposta una nuova impostazione della logica, riconducendo le composizioni degli enunciati a semplici operazioni algebriche, dopo aver rilevato le analogie fra oggetti dell'algebra e oggetti della logica (algebra booleana).

La sua terza figlia, Alicia Boole, fu anch'essa un'importante matematica: a lei si deve il termine "politopo", per riferirsi ad un solido convesso a 3 o più dimensioni come equivalente dei poligoni; i poligoni si possono quindi anche chiamare 2-politopi e i poliedri 3-politopi  (vedi 218. 1, 2, 3,tanti).






In piedi le 5 figlie: Margaret (1858-1935), Ethel Lilian (1864-1960), Alice (1860-1940), Lucy (1862-1905) e Mary Ellen (1856-1908).  Davanti: Julian & Geoffry I. Taylor, Mary Everest Boole, Leonard Stott, George Hinton e Mary Stott (seduta in braccio a Mary Everest Boole). Foto: Whitely of London, copyright UCC.






Gli operatori dell'algebra booleana possono essere rappresentati in vari modi, ma spesso sono scritti semplicemente come AND, OR e NOT che è la scrittura che viene utilizzata per parlare degli operatori booleani.
Le diverse simbologie per rappresentare gli operatori sono scelte in base al campo in cui si lavora: i matematici usano spesso il simbolo + per l'OR, e X o * per l'AND, in quanto per alcuni versi questi operatori lavorano in modo analogo alla somma e alla moltiplicazione. La negazione NOT viene rappresentata spesso da una linea disegnata sopra l'argomento della negazione, cioè dell'espressione che deve essere negata.

Boole individuò un sistema per formulare questo tipo di ragionamenti per mezzo di un’algebra delle classi: le classi venivano indicate come lettere (ad esempio, x) così come già venivano utilizzate per rappresentare numeri nell’algebra ordinaria. Se x ed y rappresentavano due classi, Boole indicava con xy la classe degli oggetti che stavano sia in x che in y: in qualche modo, stava assimilando questa nuova operazione fra classi alla moltiplicazione numerica. Sussisteva, però, una differenza sostanziale: se x è la classe dei gatti rossi, allora xx è ancora la classe dei gatti rossi. Ossia, nella nuova algebra che stava nascendo era sempre valida l’equazione  xx = x; questo assioma segna un distacco dall’algebra ordinaria.

Il passo successivo fu trovare un’analogia con le equazioni dell’algebra, dove xx = x è vera se e soltanto se x = 0 oppure x = 1. Dunque, l’algebra della logica coincide con l’algebra ordinaria limitata ai due soli valori 0 e 1. I due valori 0 e 1 andavano, quindi, interpretati come classi. Per capire, però, in che modo consideriamo le moltiplicazioni per 0 e per 1 nell’algebra ordinaria: qualunque sia il valore di x,

0 . x = 0        1 . x = x

Se interpretiamo le due identità sopra nel linguaggio delle classi, esse sono vere quando indichiamo con:

  • 0 la classe che non contiene alcunché, che oggi chiamiamo insieme vuoto,
  • 1 la classe che contiene qualunque entità cui possiamo pensare, che potremmo chiamare universe.
Rimaneva ancora da interpretare, nella nuova algebra, l’altra operazione definita nell’algebra ordinaria: l’addizione. Boole stabilì che x+y rappresentava la classe contenente tutto ciò che è contenuto in x o in y.

Boole individuò nella sua algebra anche l’operazione inversa dell’addizione: x - y denota la classe contenente tutto ciò che è contenuto in x ma non è contenuto in y.
In particolare, 1 - x, la classe complemento di x, rappresenta tutto ciò che non è contenuto in x. Allora, x + (1 - x) = 1; ossia, qualunque oggetto deve essere in una classe o nel suo complemento: una rilettura del principio del terzo escluso di Aristotele.

Utilizziamo, ora, la notazione x2 per indicare xx e vediamo come possiamo interpretare la regola fondamentale di Boole xx = x : tale regola può venire scritta come x2 = x da cui, applicando il primo principio di equivalenza delle equazioni dell’algebra ordinaria, otteniamo x2 - x = 0. Possiamo quindi raccogliere a fattor comune e ottenere x (1 - x) = 0; ossia, niente può sia appartenere che non appartenere a una classe. Per Boole questo fu un risultato entusiasmante, che rafforzò la sua convinzione di essere sulla strada giusta: infatti, questa equazione esprimeva proprio quel principio di non contraddizione che Aristotele ha descritto come l’assioma fondamentale di tutta la filosofia.





http://www.treccani.it/enciclopedia/terzo-escluso-principio-del_(Dizionario-di-filosofia)/


 

 
La logica da Aristotele a Godel
 
Con la fisica moderna (la meccanica quantistica) si è però passati da una logica aristotelica o del terzo escluso, ad una eraclitea (antidialettica) che invece lo include sostituendo il principio di non contraddizione con quello di complementare contraddittorietà; potendo un quanto essere e non essere contemporaneamente due rappresentazioni opposte di una stessa realtà: particella ed onda. Cosa che poi rappresenta il vero paradosso del divenire della realtà in generale quando "nello stesso fiume scendiamo e non scendiamo; siamo e non siamo" (Eraclito).